Center for Turbulence Research 213
Annual Research Briefs 2003

A domain decomposition parallelization of the
Fast Marching Method

By M. Herrmann

1. Motivation and objectives

Evolving interfaces play an important role in a multitude of different areas, ranging
from fluid mechanics, combustion, and grid generation to material sciences, semiconduc-
tor manufacturing, seismic analysis, and control problems [see Sethian (1999b) for a de-
tailed overview]. Traditionally, interfaces have been treated in a Lagrangian framework
tracking their evolution by, for example, marker particles [see among others Brackbill
et al. (1988)]. In recent years, however, describing the topology and evolution of inter-
faces by Eulerian partial differential equations (PDE) has become ever more popular
since this approach offers certain theoretical and computational advantages over the La-
grangian formulation (Sethian 1999b). Depending on the type of problem, two different
solution strategies for the Eulerian approach exist. In the case of an initial value prob-
lem, level set methods (Osher & Sethian 1988), or alternatively Volume-of-Fluid methods
(Noh & Woodward 1976), can be employed to solve the evolving interface. In the case of
a boundary value problem, the Fast Marching Method (Sethian 1996a) has emerged as
the efficient solution method.

In this paper, we focus on two boundary value problems that typically arise in the
numerical implementation of level set methods, namely reinitialization and redistribution.
In level set methods, an iso-surface of the level set scalar G,

G(z,t) = G = const, (1.1)

is used to define the location of an arbitrary shaped interface I'. The transport equation
for the scalar G can then be derived from simple kinematic considerations as

oG

— +u-VG=0. 1.2

ot (1.2)
Since this so-called level set equation (1.2) is valid only at the location of the interface
itself, the choice of G outside the interface, i.e. G # Gy, is in principle arbitrary. However,
for numerical reasons, G is generally chosen to be a distance function,

G =1. 1.3
vl .. (13)

Enforcing this condition is usually called reinitialization.

Furthermore, some quantities S may be defined only at the location of the interface.
In order to extend these quantities to the whole computational domain, they are set
constant in the interface normal direction,

VS -VG=0. (1.4)

This procedure is called redistribution, since it redistributes the values of S from the
interface into the surrounding domain.

214 M. Herrmann

Both, Egs. (1.3) and (1.4) constitute boundary value problems, since G and S are
defined on I' only. Several different numerical methods exist to solve these equations.
Among these are brute force approaches based on calculating the minimum of the ge-
ometric distance between each grid node in the computational domain and every point
on the interface (Merriman et al. 1994), and PDE-based approaches like the iteration
scheme by Sussman et al. (1994). While the former are computationally very expensive,
the latter inadvertently alter both the location of interface and the value of S on the
interface due to their iterative nature. In the case of the reinitialization equation (1.3),
supplementary fixes addressing this problem relatively successfully have been proposed
(Russo & Smereka 2000; Peng et al. 1999; Sussman et al. 1998; Sussman & Fatemi 1999;
Enright et al. 2002).

An alternative approach to solving Egs. (1.3) and (1.4) is the so-called Fast Marching
Method (FMM). It was originally proposed by Tsitsiklis (1994, 1995) and applied to
the level set formulation by Sethian (1996a) and Helmsen et al. (1996). The FMM is a
non-iterative procedure that explicitly makes use of the way information in Egs. (1.3)
and (1.4) propagates. The FMM is thus theoretically optimal in its operation count.
Still, typical problem sizes of state of the art numerical simulations in general require
a domain decomposition approach for parallel computing. However, the FMM is highly
sequential and hence not straightforward to parallelize in a domain decomposition sense.
At least to the knowledge of the author, no domain decomposition parallelization of the
Fast Marching Method has been published yet.

This paper is structured as follows: first, the standard, sequential FMM is reviewed.
Then, different parallelization strategies are discussed and a domain decomposition par-
allelization is proposed. Thereafter, some preliminary results concerning the speedup of
the proposed method are presented and discussed. Finally, conclusions are drawn and an
outlook to future work is given.

2. The sequential Fast Marching Method

In this section, a short overview of the standard Fast Marching Method is given. For
further details, the interested reader is referred to Sethian (1996a), Adalsteinsson &
Sethian (1999), and Sethian (1999a).

The idea of the FMM for level sets is to first solve Eq. (1.3) and use its solution to
then solve Eq. (1.4) (Adalsteinsson & Sethian 1999). Hence, we will at first focus on the
solution of Eq. (1.3).

To solve Eq. (1.3) correctly, the gradient operator has to be approximated by upwind,
entropy-satisfying finite differences (Sethian 1999a). The approximation most often used
is due to Godunov (Rouy & Tourin 1992):

VG|~ |max(D;G, DG, 0)°+

ijk
max(D G, —D;1G,0)* + (2.1)

1/2
max (D, 7 G, —D;;ZG, 0)2} ,

where D;? . are difference notations. For example, the first order approximation is

e Giji — Gi—1jk ‘e Gitijk — Giji

A parallel Fast Marching Method 215

(a) Calculate all node values that are directly adjacent to the interface and tag them as
accepted. Tag all nodes adjacent to these accepted nodes as close and all others as far.

(b) Calculate G of all close nodes by Eq. (2.3), treating G in any adjacent close or far node
as 00. Set the loop index n = 1.

(¢) Mark as accepted the close node ijk with the smallest G value, denoted by G™ = G-
(d) Mark all far nodes adjacent to Gyji as close.

(e) Recalculate the G values of all close nodes adjacent to Gy, by Eq. (2.3), treating G in
any adjacent close or far node as co.

(f) Set n =n+ 1 and return to step (c) until all nodes are accepted.

TABLE 1. The sequential FMM algorithm

Thus, the discretized version of Eq. (1.3) solved in the FMM reads as

[maX(szG, —-Df%@G,0)%+

ijk ijk
max(D /G, —D;1G,0)* + (2.3)
1/2
max(D i G, -D}iG,0)%| =1.

Provided that the G values of all nodes neighboring ijk are given, Eq. (2.3) constitutes a
quadratic equation yielding G, itself. The simple, albeit inefficient way to solve Eq. (2.3)
throughout the whole computational domain is to iteratively update each node in the
domain by Eq. (2.3) until a stationary solution is reached (Rouy & Tourin 1992).

However, this approach neglects to take advantage of the fact that, due to the upwind
structure of Eq. (2.3), information propagates only from smaller to larger values of G.
This yields attribute 1 of the FMM:

ATTRIBUTE 1. A node value Gy is determined only by those neighboring nodes of
smaller value. It can thus globally depend at most on those nodes in the domain that are
of smaller value.

Attribute 1 implies that a smallest node is fixed and cannot change its value. Hence,
given appropriate boundary conditions for G at or adjacent to the interface G = Gy,
updates of Gj;; according to Eq. (2.3) can be confined to a narrow band around the
globally smallest values that sweeps outward to ever larger values of G;i. For details see
Sethian (1996a), Sethian (1999a), and Adalsteinsson & Sethian (1999).

In summary, this leads to the sequential FMM algorithm given in Table 1. The algo-
rithm is executed once for all nodes G?jk < Gy and once for all nodes G?jk > G, where
the superscript 0 denotes the initial values of G at node ¢jk. Furthermore, the following
attribute of the Fast Marching Method can be discerned:

ATTRIBUTE 2. The sequential loop steps (c)-(f) sort all accepted nodes that are not
initially accepted in step (a) in ascending order, i.e. Gt > G™.

Using a heap sort algorithm with back pointers (Sethian 1996b) to locate the smallest
value G in step (c¢) makes the sequential FMM algorithm highly efficient with a theoretical
operation count of O(N log N).

216 M. Herrmann

(Ar,) Perform steps (a) and (b) of the sequential FMM algorithm.

(Bm) Send all nodes with ngk < Gy to process #0, all nodes with G?jk > Go to process #1.
(Cm) Perform sequential FMM algorithm steps (c)-(f).

(Em) Receive results for nodes G?jk < Gy from process #0 and results for nodes ngk > Go

from process #1.

TABLE 2. The parallel FMM algorithm P

3. Parallelizing the Fast Marching Method

In this section, different strategies to parallelize the FMM are discussed. First, a simple
parallelization strategy not based on domain decomposition is given, followed by the
discussion of several domain decomposition parallelization approaches.

3.1. Go-based parallelization

The trivial way to parallelize the FMM algorithm described in table 1 is to execute
the complete sequential algorithm for all nodes GY;;, < Gp and for all nodes G¥;; >
Gy in parallel, since neither region influences the other. The resulting algorithm P; is
summarized in Table 2.

This parallelization strategy has two obvious drawbacks. First, the parallelization is
limited to two parallel processes, since only two independent regions exist. Secondly,
depending on the problem size, memory resource problems arise, because both processes

need to work on the whole computational domain.

3.2. Domain decomposition parallelization

Domain decomposition parallelization of the sequential FMM algorithm poses two prob-
lems. First, the globally smallest close value has to be located in step (c). Although this
procedure is non-local by definition, it still is easy to parallelize, since each domain can
compute its locally smallest value independently, and then simply use these to find a
global minimum. Second, a new globally smallest value G™ can be found in step (c) only
after steps (d)-(e) of the previous loop step n — 1 have been executed.

Nevertheless, leaving at first efficiency considerations aside, domain decomposition is
straightforward. In order to simplify the notation in the following, we only discuss the
domain decomposition into two neighboring domains D,,, and D, ;1. All arguments, how-
ever, apply analogous to the three-dimensional domain decomposition into an arbitrary
number of domains. Figure 1 depicts some naming conventions that are employed in
the following. Each domain D,, is extended by r ghost nodes in the domain boundary
normal direction, where r is the spatial order of the difference approximation, Eq. (2.2).
Here, only the first order approximation is employed. Hence, each domain is extended as
depicted in Fig. 1.

Assuming that each process m = 0... N, works only on part D, of the whole compu-
tational domain, Table 3 summarizes the parallel FMM algorithm P,. Note that Py has
to be executed twice on each process, once for all nodes G?j < Go and once for all nodes
G%—k > Go. In essence, disregarding step (A), algorithm Ps is a domain decomposed
sequential algorithm, because globally only one single node in a single domain is updated
per loop step, while all other domains are waiting idle. However, algorithm P, introduces
a clearly defined inter-domain communication boundary. Recalling that the update of

A parallel Fast Marching Method 217

RN

Domain Dm ¥ Domain Dm+1

I

} }

Bm gm+1

FIGURE 1. Domain naming conventions.

(A) Perform steps (a) and (b) of the sequential FMM algorithm.

=

Locate the locally smallest close G value; denote it as Gp,, .

2

Find the globally smallest close G value, Gg = min(GDOWNp), and mark it as accepted.
If G € D, go to next step, else go to step (F).

E

Perform sequential FMM algorithm steps (c)-(e) for Gg.

=

If any of the close nodes, updated in step (e) of the sequential FMM, belong to By,
communicate them to G,,41 of domain Dy,41.

(F) Set n=n+ 1. Return to step (B) until all local nodes are accepted.
TABLE 3. The parallel FMM algorithm P»

Gijk, Eq. (2.3), using first order approximations, Eq. (2.2), does involve at most the
directly adjacent nodes in the +i, +5, and +k direction, any local node in domain D,,
can be updated correctly, provided that all ghost nodes G,,, = B;,,+1 are known. Hence,
only changes of B,,+1 need to be communicated to G,,, as is done in step (E) above.

Taking these arguments into account, one can in fact avoid the strict sequential nature
of algorithm P,. Looking for example at domain D,,,, as long as no change in G, occurs,
the locally smallest close value Gp,, can be moved into a local accepted group and
updates of the nodes adjacent to Gp, can be performed according to the sequential
FMM algorithm steps (d) and (e).

However, special care must be taken whenever a node belonging to G,,, for example
Gijk, changes. If Gji, changes to accepted status, then, recalling attribute 1, all locally
accepted nodes belonging to D,, that are smaller than or equal to G, cannot be influ-
enced by this change. Conversely, all locally accepted nodes belonging to D,,, larger than
G, might be wrong, since they could depend on G;;;. Hence, to allow for a consistent
algorithm, each domain has to be able to rollback to its state at the beginning of loop
step p, where p is such that GP~! < Gyj, < GP. The same argument applies, if G
changes from accepted to close status through a rollback operation in domain D, 1.

218 M. Herrmann

—~

A) Perform steps (a) and (b) of the sequential FMM algorithm.

Cl

) Check, if any node belonging to G,, changed status with new value G g. If so, rollback to
state SP, where p is given by GP~' < Gp < GP. Mark G5 as close and insert it into list
L. Set n = p.

c

Locate the locally smallest close G value (including list £3); denote it as Gp,, .

E

Perform steps (c)-(e) of the sequential FMM algorithm for Gp,, .

=

If node Gp,, or any of its adjacent nodes updated in step (D) belongs to B,,, communicate
them to Gy,+1 of domain D,,41.

Store the current state as S™.

23

Set n=n-+1. Return to step (B) until all local nodes are accepted.

(H) Wait until all other domains reach step (H) or a node belonging to G,, changes status.
In the latter case, go to step (B).

TABLE 4. The parallel FMM algorithm Ps

These considerations lead to the domain decomposed parallel algorithm P3 summarized
in Table 4.

The drawback of algorithm Pj is two-fold. First, the complete state of the local domain
has to be stored at every loop step in order to allow for a possible rollback to this state.
Second, any change in status of a node belonging to G,, leads to a rollback operation in
domain D,,,. To overcome these shortcomings, we will make use of the following additional
attribute of the FMM:

ATTRIBUTE 3. Let G?jk be the solution to Eq. (2.3) at loop step p. If any single one
of the adjacent nodes i'j'k’ becomes smaller, i.e. Gf,j,k, < Gf,j,k/ with p’ > p, then a

subsequent update of node ijk by Eq. (2.3) yields Gf;k < ijk.

The proof of attribute 3 is straightforward. Attribute 3 implies that any node which
has been locally accepted at loop step p and is then rolled back to status close, can retain
its ijk value, because any subsequent update will either decrease its value or leave it
unchanged. Its change back to accepted status at a later loop step is thereby uninfluenced.
Following the same line of argument, all neighboring close nodes can also retain their
G,y values. Thus, step (B) of P3 needs to rollback only the status of the nodes from
accepted back to close, but does not need to rollback their node values. Furthermore,
attribute 3 implies that only the change to accepted status of a node in G,, needs to
initiate a rollback.

Incorporating attribute 3, the final domain decomposed parallel algorithm P is given
in Table 5. Obviously, the efficiency of algorithm P, depends on the required amount of
inter-domain communication, i.e. how often nodes belonging to B,, change to accepted
status, and how many rollback operations are required in step (B). If the solution of
Eqgs. (1.3) and (1.4) is required only up to a certain distance T' away from the G = G
interface, then, naturally, only those nodes within this band, |G?j i — Go| < T, need to be
considered in the FMM algorithm. Depending on the geometry of the G = G interface,
this so-called narrow band approach (Peng et al. 1999) may drastically reduce the nec-
essary inter-domain communication, as illustrated in Fig. 2. In fact, as long as there are
no nodes ijk belonging to B,, with |ngk — Go| < T, no inter-domain communication is

A parallel Fast Marching Method 219

(A) Perform steps (a) and (b) of the sequential FMM algorithm.

(B) Check, if any node belonging to G,, changed status to accepted and decreased its value
from a previously accepted value to the new value G g. If so, rollback by marking all nodes
GP™ as close, where p is given by GP~! < Gp < GP. Mark Gp as close and insert it
into list L5. Set n = p.

(C) Locate the locally smallest close G value (including list £3); denote it as Gp,, .

(D) Perform steps (c)-(e) of the sequential FMM algorithm for Gp,, .

(E) If node Gp,, belongs to B,,, communicate it to Gm41 of domain Dy, y1.

(F) Set n=n+1. Return to step (B) until all local nodes are accepted.

(G) Wait until all other domains reach step (G) or a node belonging to G,, changes to accepted

status. In the latter case go to step (B).
TABLE 5. The parallel FMM algorithm P4

Domain D, Domain Dm41
LT[
- T~ G = 0 A ~
"4 N \\‘, N|
7 \ / N
P il : ‘ T N
1 1
1 1
1 \

\ N - g 7
h Y W V4
R N4RN N y
3 i¢ N1/ N 22
= + G — GO _|_ T < ==
L

FIGURE 2. Narrow band approach.

required at all and the problem completely decouples. Although in most applications this
is not the case, the narrow band approach can still reduce the number of inter-domain
communications substantially.

4. Redistribution

The preceding sections dealt exclusively with the solution of the reinitialization equa-
tion (1.3) as the prerequisite for solving the redistribution equation (1.4). The basic idea
in solving Eq. (1.4) is to again confine its solution to a small band around the globally
smallest G, values that marches outward to ever larger values of Gjy.

To this end, first, initial values of S have to be calculated at all nodes directly adjacent
to the G = Gy interface by either first order approximations (Adalsteinsson & Sethian
1999) or higher order schemes (Chopp 2001). Then, Eq. (1.4) is approximated by

a7 (DiGr - DiS) + A (DiG™ - DEES) +

A (D1 DS) + A (DG - DS +

ijk ijk ijk

A= (DiG" - D) + A% (DfG" - DS) = 0. (4.1)

220 M. Herrmann

1.0 1.0 1.0
N N N
0.5 0.5 0.5
0 0
00 << 00 00 <& 2 00 00 00
05 05 05 <2 05 05
Y 1.0 1.0 * Y 1.0 1.0 * *
FI1GURE 3. Optimal domain decomposition into 2, 4, and 8 domains.
Here, the switch A~ is given by
3 —x +x n — —Tn
a1 max(Dgien, ~DfiGn,0) = DG 42)
0 : otherwise ,

with all other A defined accordingly. The switch A ensures that only those nodes are
used to evaluate Sjji, in Eq. (4.1) that also contributed to the update of G, Eq. (2.3).
In every FMM loop step, Eq. (4.1) is only solved for the node that changes status to
accepted in step (c¢) of the sequential FMM. If this node belongs to B, its new value S™
has to be communicated to the corresponding ghost node in domain D,,+1 in step (E)
of the parallel FMM algorithm Pj.

5. Results

To evaluate the performance of the proposed parallel FMM algorithm P, to solve
Egs. (1.3) and (1.4), the results of four different sets of computations are presented in the
following. All four sets are three-dimensional and based upon the same interface geometry,
composed of a sphere with radius Ry = 0.25 and center located at x. = (0.5,0.5,0.5).
The level set scalar field representing this sphere is given by

G(x) = Ry — |z — x| (5.1)

The distribution of S on the interface is set to

S(x) = cos (arctan (Z : ‘Zi)) sin (arctan <\/(y — yf)z_f:(z — >>) (5.2)

All computations are performed on a global domain of size [0,1]x[0,1]x[0,1] discretized by
192x192x192 equidistant cartesian grid nodes.

5.1. Optimal domain decomposition

As mentioned in section 1, information in Egs. (1.3) and (1.4) propagates in the interface
normal direction. Hence, a domain decomposition such that all domain boundaries are
parallel to the interface normal vectors is optimal in the sense that no information does
cross these boundaries. Figure 3 shows such a decomposition into 2, 4, and 8 domains.
This domain decomposition is also optimal with regard to load balancing. Since all do-
mains contain the exact same number of nodes G, < Gg as well as Gy > G, the load
imbalance factor is F} = 0, see Eq. (5.5) defined later.

A parallel Fast Marching Method 221

10 T I I I 10 I T T I
t/ 2 t/ 2
8 L . 8 | .
6 - 6 | -
4L] 4| J
2 - - 2+ -
0] 1 1] 0] 1] 1
0 2 4 6 8 10 0 2 4 6 8 10
Ny Ny

FIGURE 4. Speedup due to parallel FMM employing the narrow band approach (left) and whole
domain update (right) with the optimal decomposition into 1, 2, 4, and 8 domains. Dashed line
denotes theoretically possible speedup, straight line represents attained speedup.

01 1 1 1 01 1 1 1
F F
0.08 k-] - 0.08 | i
0.06 | | 0.06 | -
0.04 | 0.04 | -
0.02 | H 0.02 | H
0 1 1 1 0 1 1 1
1 2 4 8 1 2 4 8
Np Np

FIGURE 5. Overhead due to parallel FMM employing the narrow band approach (left) and whole
domain update (right) with the optimal decomposition into 1, 2, 4, and 8 domains. Shown are
communication factor F, () and rollback factor F;. (m).

Two different sets of computations were performed. The first set employs the narrow
band approach with the width of the band set to T' = 8 Ax. The second set performs the
FMM throughout the whole computational domain.

Figure 4 shows a comparison of the speedup for both cases to the theoretically pos-
sible speedup. The theoretically possible speedup was determined by calculating only
domain number 0, see Fig. 3, using Neumann boundary conditions. Note that, since the
operation count of the sequential FMM is O(N log N), slightly hyperlinear speedup is
theoretically possible. However, the actual efficiency attained in the parallel computa-
tion is approximately 0.96 for the narrow band approach and roughly 0.98 for the whole
domain update.

Figure 5 illustrates the overhead due to the parallelization. Depicted are the commu-
nication factor F,, defined as

total number of communication operations
F. = , (5.3)
total number of nodes

222 M. Herrmann

RVAVAVA

D>
=
|
< | >
e
e
<]
T

JAVAVAVAVAVAVA

\/
AA

]

)/067

1.00 1.00

FIGURE 6. Non-optimal domain decomposition into 3, 9, and 27 domains.

30 I T 30 I T
ti/ %, i/,
201 - 20 -
10 - 10 -
0 10 20 30 0 10 20 30
Np Np

FIGURE 7. Speedup due to parallel FMM employing the narrow band approach (left) and
whole domain update (right) with the non-optimal decomposition into 1, 3, 9, and 27 domains.

and the rollback factor F)., defined as

total number of rollback operations
F. = . (5.4)
total number of nodes

As expected, with optimal domain decomposition, the amount of communication and
rollback operations is very small, indicating that the overhead due to parallelization is
minimal. This result is consistent with the observed high efficiency.

5.2. Non-optimal domain decomposition

When applying the parallel FMM to actual problems, an optimal domain decomposition,
as presented in the previous section, is not always viable. In this non-optimal case, three
major factors can impact the performance of the parallel algorithm: load imbalancing,
communication overhead, and rollback overhead. To illustrate their effect, two sets of
computations are performed using a decomposition into 1, 3, 9, and 27 domains as de-
picted in Fig. 6. The first set again uses the narrow band approach with the width of the
band set to T = 8 Az, whereas the second set calculates the FMM throughout the whole
computational domain.

Figure 7 shows the speedup attained for both the narrow band approach on the left and
the whole domain update on the right. As can be seen, speedup, and thus efficiency, is
significantly lower than the optimal domain decomposition case, see Fig. 4. The efficiency
decreases to 0.17 for the narrow band approach and 0.34 for the whole domain update.

A parallel Fast Marching Method 223

1 1 1 I 1 1 1 1

F _ F m
0.8 | S . 0.8 | [=
0.6 | . 0.6 | -
04 | | 04 | i
02 L 02 |]

0 1 1 1 0 1 I’i I’i

1 3 9 27 1 3 9 27

N, N,

F1cURE 8. Load imbalance factor F; due to parallel FMM employing the narrow band approach
(left) and whole domain update (right) with the non-optimal decomposition into 1, 3, 9, and 27
domains. Shown is Fj for Gijr < Go (v) and F; for Gij, > Go ().

1.5 : ,
F F

0.5 | H 0.5 |
0 1 1 T 1 0 1 ﬂ 1 1
1 3 N 9

1.5 T T T

27 13 9 27
p Np

FIGURE 9. Overhead due to parallel FMM employing the narrow band approach (left) and whole
domain update (right) with the non-optimal decomposition into 1, 3, 9, and 27 domains. Shown
are communication factor F. (+) and rollback factor F, ().

To further analyze this behavior, the load imbalance factor

maximum number of nodes per domain

F=1- (5.5)

average number of nodes per domain
for each of the four different domain decompositions is depicted in Fig. 8. Since the
parallel FMM algorithm is called twice, once for all nodes G;;; < Go and once for all
nodes G, > G, F] is calculated accordingly. Obviously, the load imbalance factors for
both sets are relatively large. This explains the significantly reduced efficiency of the
non-optimal domain decomposition as compared to the optimal domain decomposition.
Otherwise, the load imbalance factors for G;;; > Gy are roughly the same for both sets.
However, the load imbalance factor for G, < Gy is significantly larger in the narrow
band approach than in the whole domain update, leading to the lower speedup and
efficiency in the narrow band approach as compared to the whole domain update.

Figure 9 exhibits the communication factor F, and the rollback factor F,. Compared to
the optimal domain decomposition case (Fig. 5) both factors are one order of magnitude
larger. Furthermore, F, and F,. are significantly larger in the narrow band approach as
opposed to the whole domain update. This is due to the aforementioned higher load
imbalance in the narrow band approach.

224 M. Herrmann

6. Conclusions and future work

In this paper, the first domain decomposition parallelization of the Fast Marching
Method for level sets has been presented. Parallel speedup has been demonstrated in
both the optimal and non-optimal domain decomposition case. The parallel performance
of the proposed method is strongly dependent on load balancing separately the number
of nodes on each side of the interface. A load imbalance of nodes on either side of the
domain leads to an increase in communication and rollback operations. Furthermore,
the amount of inter-domain communication can be reduced by aligning the inter-domain
boundaries with the interface normal vectors. In the case of optimal load balancing and
aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient,
reaching efficiency factors of up to 0.98.

Future work will focus on the extension of the proposed parallel algorithm to higher
order accuracy. Also, to further enhance parallel performance, the coupling of the domain
decomposition parallelization to the G-based parallelization will be investigated.

Acknowledgments

The support of the German Research Foundation (DFQG) is gratefully acknowledged.
The author also would like to thank Frank Ham and Yuan-Nan Young for many helpful
discussions.

REFERENCES

ADALSTEINSSON, D. & SETHIAN, J. A. 1999 The fast construction of extension velocities
in level set methods. J. Comput. Phys. 148, 2-22.

BrACKBILL, J. U., KoTHE, D. B. & RUPPEL, H. M. 1988 FLIP: A low dissipation,
particle-in-cell method for fluid flow. Comput. Phys. Commun. 48, 25-38.

Cuoprp, D. L. 2001 Some improvements of the fast marching method. SIAM J. Sci.
Comput. 23, 230-244.

ENRIGHT, D., FEDKIW, R., FERZIGER, J. & MITCHELL, I. 2002 A hybrid particle level
set method for improved interface capturing. J. Comp. Phys. 183, 83-116.

HeLMSEN, J., PUCKETT, E., COLELLA, P. & DORR, M. 1996 Two new methods for
simulating photolithography development in 3D. Proc. SPIE 2726, 253-261.

MERRIMAN, B., BENCE, J. & OSHER, S. 1994 Motion of multiple junctions: A level set
approach. J. Comput. Phys. 112, 334.

Non, W. F. & WoODWARD, P. 1976 SLIC (Simple Line Interface Calculation). In Lec-
ture Notes in Physics Vol. 59, Proceedings of the Fifth International Conference on
Numerical Methods in Fluid Dynamics (ed. A. 1. V. D. Vooren & P. J. Zandenber-
gen), pp. 330-340. Berlin: Springer.

OSHER, S. & SETHIAN, J. A. 1988 Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49.

PENG, D., MERRIMAN, B., OSHER, S., ZHAO, H. & KaANG, M. 1999 A PDE-based
fast local level set method. J. Comput. Phys. 155, 410-438.

Rouy, E. & ToURIN, A. 1992 A viscosity solution approach to shape-from-shading.
SIAM J. Num. Anal. 29, 867—884.

Russo, G. & SMEREKA, P. 2000 A remark on computing distance functions. J. Comput.
Phys. 163, 51-67.

A parallel Fast Marching Method 225

SETHIAN, J. A. 1996a A fast marching level set method for monotonically advancing
fronts. Proc. Natl. Acad. Sci. USA 93, 1591-1595.

SETHIAN, J. A. 1996b Level Set Methods: Fvolving Interfaces in Geometry, Fluid Me-
chanics, Computer Vision and Material Science. Cambridge, UK: Cambridge Uni-
versity Press.

SETHIAN, J. A. 19994 Fast marching methods. SIAM Review 41 (2), 199-235.

SETHIAN, J. A. 19990 Level Set Methods and Fast Marching Methods, 2nd edn. Cam-
bridge, UK: Cambridge University Press.

SussMAN, M. & FaTeEMmI, E. 1999 An efficient, interface-preserving level set redistancing
algorithm and its application to interfacial incompressible fluid flow. STAM J. Sci.
Comput. 20 (4), 1165-1191.

SussMAN, M., FATEMI, E., SMEREKA, P. & OSHER, S. 1998 An improved level set
method for incompressible two-phase flows. Comp. Fluids 27 (5-6), 663—680.

SUSSMAN, M., SMEREKA, P. & OSsHER, S. 1994 A level set method for computing
solutions to incompressible two-phase flow. J. Comput. Phys. 119, 146.

TsiTSIKLIS, J. 1994 Efficient algorithms for globally optimal trajectories. In Proceedings
of the 33rd Conference on Decision and Control, pp. 1368-1373. Lake Buena Vista.

TsiTsikLis, J. 1995 Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control 40, 1528-1538.

